<u>Chapter 7</u>: Techniques of Integration

Section 7.2: Trigonometric Integrals

What we will go over in this section...

- 1. $\int \sin^m x \cos^n x \, dx$
- 2. $\int tan^m x sec^n x dx$
- 3. $\int \sin mx \sin nx \, dx$ $\int \sin mx \cos nx \, dx$ $\int \cos mx \cos nx \, dx$

First, some derivatives you'll need to know...

$$(\sin x)' =$$

$$(\cos x)' =$$

$$(\tan x)' =$$

$$(\sec x)' =$$

Some Trig. Identities you need to know...

$$sin^2x + cos^2x = 1$$

$$tan^2x + 1 = sec^2x$$

$$\rightarrow tan^2x = sec^2x - 1$$

Some Trig. Identities you need to know...

 $\sin(2x) = 2\sin x \cos x$

$$\to \sin x \cos x = \frac{1}{2}\sin(2x)$$

Some Trig. Identities you need to know...

$$\cos(2x) = \cos^2 x - \sin^2 x$$

$$\cos(2x) = 2\cos^2 x - 1$$

$$\to \cos^2 x = \frac{1 + \cos(2x)}{2}$$

$$\cos(2x) = 1 - 2\sin^2 x$$

$$\to \sin^2 x = \frac{1 - \cos(2x)}{2}$$

Some Integrals you need to know...

$$\int \sin x \, dx =$$

$$\int \cos x \, dx =$$

Q: How would you do this integral?

$$\int \left(\sin^4 x + 3\sin^3 x - \sin x - 3\right)\cos x \ dx$$

Ex 1: Find $\int \sin^4 x \cos^5 x \ dx$

Similar Integrals:

$$\int \sin^7 x \cos^2 x \ dx$$

$$\int \sin^3 x \cos^9 x \ dx$$

Ex 2: Find $\int \sin^2 x \cos^4 x \ dx$

Strategy for Evaluating $\int \sin^m x \cos^n x \, dx$

(a) If the power of cosine is odd (n = 2k + 1), save one cosine factor and use $\cos^2 x = 1 - \sin^2 x$ to express the remaining factors in terms of sine:

$$\int \sin^m x \cos^{2k+1} x \, dx = \int \sin^m x \, (\cos^2 x)^k \cos x \, dx$$
$$= \int \sin^m x \, (1 - \sin^2 x)^k \cos x \, dx$$

Then substitute $u = \sin x$.

Strategy for Evaluating $\int \sin^m x \cos^n x \, dx$

(b) If the power of sine is odd (m = 2k + 1), save one sine factor and use $\sin^2 x = 1 - \cos^2 x$ to express the remaining factors in terms of cosine:

$$\int \sin^{2k+1} x \cos^n x \, dx = \int (\sin^2 x)^k \cos^n x \sin x \, dx$$
$$= \int (1 - \cos^2 x)^k \cos^n x \sin x \, dx$$

Then substitute $u = \cos x$. [Note that if the powers of both sine and cosine are odd, either (a) or (b) can be used.]

Strategy for Evaluating $\int \sin^m x \cos^n x \, dx$

(c) If the powers of both sine and cosine are even, use the half-angle identities

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x) \qquad \cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

It is sometimes helpful to use the identity

$$\sin x \cos x = \frac{1}{2}\sin 2x$$

EXAMPLE 1 Evaluate
$$\int \cos^3 x \, dx$$
.

EXAMPLE 2 Find
$$\int \sin^5 x \cos^2 x \, dx$$
.

EXAMPLE 3 Evaluate
$$\int_0^{\pi} \sin^2 x \, dx$$
.

EXAMPLE 4 Find
$$\int \sin^4 x \, dx$$
.

Some More Integrals you need to know...

$$\int \tan x \, dx =$$

$$\int \sec x \, dx =$$

Q: How would you do these integrals?

$$\int \left(5tan^2x + \tan x + 1\right)sec^2x \ dx$$

$$\int (sec^5x + sec^3x + secx) secx \tan x \ dx$$

Ex 3: Find $\int tan^8 x sec^6 x dx$

Ex 4: Find $\int tan^5 x sec^9 x dx$

Note: In the case of something like

$$\int \tan^7 x \sec^6 x \, dx$$

You can do the integral 2 different ways

Strategy for Evaluating $\int \tan^m x \sec^n x \ dx$

(a) If the power of secant is even $(n = 2k, k \ge 2)$, save a factor of $\sec^2 x$ and use $\sec^2 x = 1 + \tan^2 x$ to express the remaining factors in terms of $\tan x$:

$$\int \tan^m x \sec^{2k} x \, dx = \int \tan^m x \left(\sec^2 x \right)^{k-1} \sec^2 x \, dx$$
$$= \int \tan^m x \left(1 + \tan^2 x \right)^{k-1} \sec^2 x \, dx$$

Then substitute $u = \tan x$.

Strategy for Evaluating $\int \tan^m x \sec^n x \ dx$

(b) If the power of tangent is odd (m = 2k + 1), save a factor of sec $x \tan x$ and use $\tan^2 x = \sec^2 x - 1$ to express the remaining factors in terms of sec x:

$$\int \tan^{2k+1} x \sec^n x \, dx = \int (\tan^2 x)^k \sec^{n-1} x \sec x \tan x \, dx$$
$$= \int (\sec^2 x - 1)^k \sec^{n-1} x \sec x \tan x \, dx$$

Then substitute $u = \sec x$.

For other cases, the guidelines are not as clear-cut. We may need to use identities, integration by parts, and occasionally a little ingenuity.

EXAMPLE 5 Evaluate
$$\int \tan^6 x \sec^4 x \, dx$$
.

EXAMPLE 6 Find
$$\int \tan^5 \theta \sec^7 \theta \ d\theta$$
.

Ex 5 (book Ex. 7, pg. 483):

Find $\int tan^3 x dx$

Ex 6 (book Ex. 8, pg. 483):

Find $\int sec^3 x dx$

3. Integrals of the form $\int \sin mx \sin nx \, dx$, $\int \sin mx \cos nx \, dx$, or $\int \cos mx \cos nx \, dx$

- To evaluate the integrals (a) $\int \sin mx \cos nx \, dx$, (b) $\int \sin mx \sin nx \, dx$, or (c) $\int \cos mx \cos nx \, dx$, use the corresponding identity:
 - (a) $\sin A \cos B = \frac{1}{2} [\sin(A B) + \sin(A + B)]$
 - (b) $\sin A \sin B = \frac{1}{2} [\cos(A B) \cos(A + B)]$
 - (c) $\cos A \cos B = \frac{1}{2} [\cos(A B) + \cos(A + B)]$

3. Integrals of the form $\int \sin mx \sin nx \, dx$, $\int \sin mx \cos nx \, dx$, or $\int \cos mx \cos nx \, dx$

Ex 7: Find $\int \sin 8x \cos 5x \, dx$